青瓜和黄瓜有什么区别| 东北方是什么方位| 藏毛窦是什么病| 信子是什么意思| 华丽转身是什么意思| 空调干燥是什么意思| 菠萝蜜是什么季节的水果| 宝宝不爱喝水有什么好的办法吗| yet是什么意思| 茶色尿是什么原因引起的| 神经疼痛吃什么药| 玄学是什么意思| 圆是什么结构| 看胸挂什么科| 舌头疼痛吃什么药| pacs什么意思| 十一月是什么星座| 做梦死人了是什么征兆| 车厘子是什么季节的| o型血和ab型血生的孩子是什么血型| 乙木代表什么| 农历六月初七是什么星座| 宫颈糜烂用什么药| 喝酒肚子疼是什么原因| 手麻了是什么原因| 高密度脂蛋白胆固醇偏低是什么意思| 结局be是什么意思| 支原体吃什么药| 五位一体是什么| 小米是什么米| 梦见别人开车撞死人是什么意思| 梦见抓鱼是什么意思| 属猪跟什么属相最配| 梦见哭是什么意思| 金蟾吃什么| 什么是富贵包| 什么力竭| 孙悟空原名叫什么| 纹眉失败擦什么淡化| 眼开大财主是什么生肖| 18k金是什么意思| 泉肌症是什么病| kys什么意思| 迪拜为什么那么有钱| 燚是什么意思| 红细胞减少是什么原因| 吃了避孕药后几天出血是什么原因| 2026年是什么命| 昆明飞机场叫什么名字| 榴莲吃了对身体有什么好处| 夏天有什么| 爱理不理是什么意思| 玉皇大帝姓什么| 经常困想睡觉是什么问题| 尿酸高吃什么蔬菜好| 娃娃鱼用什么呼吸| 葬爱家族是什么意思| 突如其来什么意思| 小儿发烧吃什么药| 炎性结节是什么意思| 脑膜瘤钙化意味着什么| 什么万| 乙型肝炎表面抗体高是什么意思| nsfw什么意思| 颈动脉强回声斑块是什么意思| 13岁属什么生肖| 中性粒细胞绝对值偏高是什么原因| 小儿厌食吃什么药最好| 中指尖麻木是什么原因| 硬膜囊前缘受压是什么意思| 等字五行属什么| 决堤什么意思| 24是什么生肖| 怀孕肚子疼是什么原因| 特应性皮炎是什么意思| 鼻子流血是什么原因| 无花果什么味道| 什么是素质教育| 朝鲜冷面是什么面| 风向是指风什么的方向| 为什么要长征| 磁场是什么| 窦性心动过速什么意思| 什么病会传染| 妈妈的奶奶应该叫什么| 全身酸痛是什么原因| 12.29是什么星座| 岩茶是什么茶类| 静脉曲张什么症状| 什么是事实婚姻| 便秘吃什么药最好最快| 医政科是做什么的| 血清钙偏高是什么原因| positive是什么意思| 馕是什么意思| 看胃病挂什么科| 肺炎用什么药| 多汗症去医院挂什么科| 异丙醇是什么| 牙齿有黑线是什么原因| 非转基因是什么意思| 胃窦在胃的什么位置| 人为什么会缺钾| 不靠谱是什么意思| 胎盘下缘达宫颈内口是什么意思| 尿中红细胞高是什么原因| 送女朋友什么礼物好| 脸色发黑发暗是什么原因| 梦到牛是什么预兆| 男扮女装叫什么| 毛周角化症用什么药膏| bc什么意思| ra医学上是什么意思| 专科学什么专业好就业| 东厂是什么意思| 向日葵是什么意思| 睾丸炎有什么症状| 为什么有的人特别招蚊子| ooc是什么| 维c有什么功效和作用| 鸽子吃什么粮食| 低度鳞状上皮内病变是什么意思| 女生为什么会长胡子| 芒果和什么不能一起吃| 壮志凌云是什么生肖| 月经没来吃什么药可以催月经来| 少校是什么级别| 什么药一吃就哑巴了| 贾珍和贾政是什么关系| 女人长期喝西洋参有什么好处| 舌头起泡是什么原因引起的| 马路杀手是什么意思| 肚子胀不消化吃什么药| 欧盟是什么| 淋症是什么意思| 荡秋千有什么好处| 辛苦是什么意思| 唇炎用什么药膏| 喝酒喝吐了用什么缓解| 眼干眼涩用什么眼药水| 89年属什么生肖| 鼠配什么生肖最好| 什么叫主动脉硬化| 什么牌子的风扇好| 孔雀开屏寓意什么意思| 国画是什么| 喝茶叶茶有什么好处| 脸发红是什么原因| 擦什么能阻止毛发生长| ca724偏高是什么意思| 做些什么| 为什么会长火疖子| 来月经前头痛什么原因| 猿人头是什么牌子| 形影不离是什么意思| 肥猪拱门是什么生肖| 肺与什么相表里| 埋线是什么| lps医学上是什么意思| vivi是什么意思| 裤裙配什么上衣好看| cbd什么意思| 锁骨中间的窝叫什么| 长期低血糖对人体有什么危害| 五海瘿瘤丸主要治什么病| 1993年出生的属什么| 你本来就很美是什么广告| 白内障吃什么药| 海米是什么| 为什么做完爱下面会疼| 异常灌注是什么意思| 刮痧的痧是什么东西| 中央民族大学什么档次| 疙瘩是什么意思| 脱发缺少什么维生素| 保养是什么意思| 梦到老虎是什么意思| 什么病会吐血| 医院减肥挂什么科| 阴虚吃什么药效果最好| 人为什么会长智齿| 帝王术是什么意思| 苗侨伟为什么叫三哥| 驾校体检都检查什么| 宫寒应该吃什么怎样调理| 六月十六是什么日子| 头晕是为什么| 天罗地网是什么意思| 肝血虚吃什么食物调理| 芥菜什么时候种| 蜂蜜什么时候喝最好| 彩字五行属什么| 妈妈的爱是什么| 吃什么可以治拉肚子| ex是什么| 抑菌液有什么作用| 白带过氧化氢阳性什么意思| 梦到知了猴是什么意思| 入伏天是什么意思| 午五行属什么| 伤口拆线挂什么科| 做什么梦暗示你怀孕了| 与世无争是什么意思| 西夏国是现在什么地方| 澎湃的什么| 六字真言是什么意思| 7.30是什么星座| 梦见大老鼠是什么意思| 为什么拉屎是绿色的| au9999是什么意思| 空降兵属于什么兵种| modern是什么牌子| 为什么不能指彩虹| yp什么意思| 一什么桌子| 927什么星座| 装孙子是什么意思| 阴毛变白是什么原因| 北京属于什么气候| 一国两制什么时候提出的| 叫舅舅的是什么关系| 落幕是什么意思| 男人遗精是什么原因| 薄荷长什么样| 腰椎间盘突出适合什么运动| 迁坟有什么讲究和忌讳| hpv51阳性是什么意思| 肾病可以吃什么水果| 虚岁24岁属什么生肖| 腿纹不对称有什么影响| 桑叶有什么作用和功效| 妞字五行属什么| 吃什么会影响验孕棒检验结果| 精液偏黄是什么原因| 尿检ph值是什么意思| 去医院看肛门挂什么科| 什么可以祛痘印| 暑假什么时候结束| 压床是什么意思| 子宫肌瘤术后吃什么好| 打开什么| 骨肉瘤是什么病| 北京市长什么级别| 为什么会缺铁性贫血| 人又不人鬼不鬼是什么生肖| 唾液酸苷酶阳性什么意思| 伊朗是什么派| 小孩体检挂什么科| 尿崩症吃什么药最有效| 改姓需要什么手续| 中书舍人是什么官职| 杭州有什么景点| 属虎的生什么属相的宝宝好| 一动就出汗是什么原因| 鳖是什么动物| 什么叫一桌餐| 多吃木瓜有什么好处| 国花是什么花| 听之任之是什么意思| 什么病不能吃鸡蛋| 办低保需要什么条件| 红斑狼疮的症状是什么| 梦见抬死人是什么意思| 3月14号是什么星座| 百度
 

FAQ



Where does the name 'KBpedia' come from?
The term 'KBpedia' is a portmanteau of "knowledge base (KB)" and "encyclopedia", which represents our semantic and knowledge graph approach to artificial intelligence. The name is meant to honor Wikipedia and DBpedia, two constituent KBs of the system. 百度   同时,来自物流企业的代表也认为,此次极限挑战赛从实际用车的角度出发,为他们提供了选购车辆的详细参考,并且也在现场学习到了如何更好地在恶劣环境下正确对车辆的驾驶和操作,为他们日后在高寒、复杂路况的运营中提供了有效的技术指导。

 

Knowledge-based AI is a new field for me; how can I get up to speed quickly?
Knowledge-based artificial intelligence, or KBAI, is a branch of artificial intelligence focused on knowledge-based systems. A good introduction is the Knowledge-based Artificial Intelligence article. How knowledge bases can be a rich source of features (or input variables) to training machine learners is described in the A (Partial) Taxonomy of Machine Learning Features article. You can supplement these intros with further detail on KBAI and Charles Peirce, who set the logic basis for much of KBpedia.

 

Where can I learn more about Charles Sanders Peirce?
Actually, there is a quite excellent set of starting articles about Charles Sanders Peirce (pronounced "purse") on Wikipedia. Additional links under the Peirce category and external links from there should get you on your way.

 

How do Peirce's Universal Categories actually influence KBpedia's design?
The entire upper structure category system for the KBpedia Knowledge Ontology is based on our understanding of Peirce's Universal Categories of Firstness, Secondness and Thirdness. KKO can also be downloaded and inspected in an ontology editor such as Protege. The KKO upper structure provides the tie-in to KBpedia's 30 or so "core" typologies.

 

What is a 'knowledge graph'?
A 'knowledge graph' is an ontology; that is, an organized network of related and interconnected concepts. Specific things (or objects) in the given domain are represented as nodes in the graph, with edges or connections between those nodes representing the relationships between things. Knowledge graphs (ontologies), if organized in a coherent and consistent manner, may be reasoned over and used to select and inspect related things.

 

What is 'distant supervision'?
Machine learning is most often split into supervised and unsupervised learning. Supervised learning uses labeled inputs as the objective functions to train the learners; unsupervised learning requires no labeling in advance. For knowledge and natural language purposes, supervised typically works the best, but is more time consuming and costly. Distant supervision is a way to reduce these costs by leveraging the labels that already exist in knowledge bases or vetted knowledge sources. Semi-supervised is another variant that uses both labeled and unlabeled data.

 

But how does this compare to what I keep hearing about 'deep learning'?
Deep learning is based on a variety of so-called neural nets, and is an iterative technique where each learning iteration forms a layer of new results, which provide the feature inputs for the next iteration (layer). In knowledge and NLP applications, existing labels (supervision) are often used as part of the feature inputs. Unsupervised may also be used to generate new features or structure. Having "feature richness", including much labeled data, which KBAI provides, appears to work best for deep learning applied to knowledge representation or natural language.

 

So is KBAI somehow related to all of this?
Absolutely. Knowledge-based artificial intelligence has the ideal of massively labeled, logical reasonable, and coherently organized knowledge structures and language. The What is KBAI? page describes how these kinds of "feature rich" knowledge bases help promote both supervised and unsupervised learning, and are also good substrates for deep learning. Moreover, KBAI knowledge structures also lend themselves to quicker and more effective mapping to external schema and data.

 

How come when I search for XXX in the knowledge graph I do not see an autocomplete entry? I'm sure it must be in the system.
Yeah, this is a limitation of the current KBpedia search function. Right now, KBpedia search is focused on the use of reference concepts (RCs) as the entry points. Though millions of entities may be found by navigating the graph, these are not yet indexed in the KBpedia search function. We are working on this, and will announce when this enhanced search function is available.

 

There seems to be a lot of structure or features in KBpedia; where is a good overview?
Yes, by design, KBpedia is optimized to expose the most structure (features) possible in the underlying knowledge bases. A summary of these structures is provided in the KKO Structural Components page.

 

How come two other large, public knowledge bases, YAGO and Freebase, are not part of the "core" KBpedia?
In fact, there are some Freebase mappings on KBpedia. We did not formally include Freebase because it has been shut down by Google, with migration of some parts of it to Wikidata. As for YAGO, a system we like and have been involved with from its first release in 2008, we do not include it because its conceptual basis in WordNet is different than the conceptual underpinnings of KBpedia. WordNet is a lexical vocabulary, and not of concepts and entities.

 

How big is KBpedia?
There is no single, agreed-upon metric for measuring the size of knowledge bases. Nonetheless, we try to capture the size of KBpedia through a number of measures, as shown on the KBpedia statistics page. There are 58,000 reference concepts, 40 million entities, 3.5+ billion direct assertions, and nearly 7 billion inferred facts on KBpedia.

 

I see occasional errors on the site. Why is that, and what is the overall quality level of KBpedia?
The human eye has an uncanny ability to pick out things that are not level or that are out of plumb. Similarly, when we scan results or result lists, we can often quickly see the errors or misassignments. Machine systems in information retrieval and connecting data are deemed "very good" when their accuracy rates are over 95%, and are generally viewed as "excellent" when they are over 98%. But in a system of millions of assertions, such as KBpedia, a 98% accuracy rate still translates into 20,000 errors per 1 million assertions! That is quite a large amount. Because of its high degree of manual vetting, we estimate the accuracy of KBpedia to be over 99%, but that still masks many errors and misassignments. (We discover them ourselves on a routine basis, and for which we apply automated quality and consistency checks.) We are committed to get this error rate as low as possible, which is why we include a prominent red button on many screens to flag observed errors. Please, when you see a problem, let us know!

 

What is the status of OpenCyc in KBpedia's constituent knowledge bases?
Shortly after the initial release of KBpedia in early 2017, Cycorp announced it was ceasing support of the open source version of Cyc, OpenCyc. Since literally tens of thousands of downloads had occurred for OpenCyc since its initial release in 2002, and because many key structural relationships in KBpedia were informed by OpenCyc, we have retained these linkages. See further the page on OpenCyc for more information.

 

There's alot going on with this site; how does it all work?
The two major working portions of the site are the demo and the interactive knowledge graph. About the Demo is the help page for the demo. The KG is explained in the How to Use the Knowledge Graph page.

 

Who supplied the icons on this site?
The Interface and Web icons are designed by Freepik and distributed by Flaticon.

 

What are the sources for the percent improvement from using KBpedia?
The data preparation effort estimates come from Figure Eight.
The failure rates from major IT projects have been a subject of analysis for at least two decades. Depending on the analyst and date, and ranging over major IT projects to data warehousing and integration, sources such as Gartner, Geneca, and many others have documented failure rates from "more than half" to 80%. Most studies, including recent ones, have centered on the 65% to 75% failure range.
 
百度